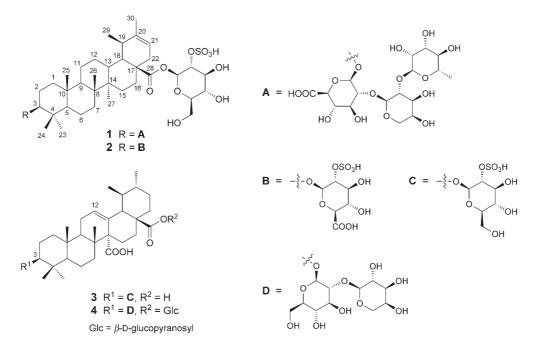
Ursane-Type Triterpene Saponins from Zygophyllum geslini

by Dalila Smati^a)^b), Anne-Claire Mitaine-Offer^a), Tomofumi Miyamoto^c), V. Hammiche^b), and Marie-Aleth Lacaille-Dubois*a)

^a) Laboratoire de Pharmacognosie, Unité de Molécules d'Intérêt Biologique (UMIB), UPRES-EA 3660, Faculté de Pharmacie, Université de Bourgogne, 7 Bd. Jeanne D'Arc, BP 87900, 21079 Dijon Cedex, France

^b) Laboratoire de Botanique Médicale, Faculté de Médecine, Université d'Alger, 18 Avenue Pasteur, 16000 Alger, Algeria

^c) Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan


Four new ursane-based triterpene glycosides, compounds 1-4, as well as the known glycosides zygophylosides E, G, and H, and $3-O-(\beta-D-quinovopyranosyl)quinovic acid 28-(O-\beta-D-glucopyranosyl)$ ester, were isolated from the BuOH-soluble fraction of the MeOH/H₂O 7:3 extracts of Zygophyllum geslini (roots or aerial parts). Their structures were established mainly by 1D- and 2D-NMR techniques, in combination with HR-MS analysis and acid hydrolysis.

Introduction. - During our research on Algerian medicinal plants, Zygophyllum geslini Coss. (Zygophyllaceae), traditionally used as antidiabetic [1], was collected in Central Sahara. A cytotoxic triterpene derivative, 3-O-[(E)-3,4-dihydroxy-cinnamoyl]erythrodiol, was previously isolated from the roots [1], but no triterpene glycoside. In this paper, we describe the isolation and structure elucidation of four new ursanetype triterpene saponins, compounds 1-4, together with four known compounds, zygophylosides E, G, and H [2], and 3-O-(β -D-quinovopyranosyl)quinovic acid 28-(O- β -D-glucopyranosyl) ester [3].

Results and Discussion. - Two crude saponin mixtures were obtained from the BuOH-soluble fraction of the MeOH/H₂O 7:3 extracts of the roots and the aerial parts, respectively of Z. geslini. They were submitted individually to several purification steps based on preparative chromatography, yielding compounds 1, 4, zygophylosides E, G, and H, and 3-O-(β -D-quinovopyranosyl)quinovic acid 28-(O- β -D-glucopyranosyl) ester from the roots, and compounds 1-3 as well as zygophylosides E and G from the aerial parts, respectively. Their structures were elucidated mainly by NMR spectroscopy, including 1D- and 2D-NMR experiments (¹H,¹H-COSY, TOCSY, NOESY, HSQC, HMBC), in combination with mass spectrometry (MS).

Compound 1 exhibited in the HR-ESI mass spectrum (positive-ion mode) the $[M + Na]^+$ peak at m/z 1175.4932 (calc. 1175.4920), consistent with the molecular formula C₅₃H₈₄O₂₅S. Negative-ion FAB-MS showed the $[M - H]^-$ peak at m/z 1151, indicating a molecular weight of 1152. Other fragment-ion peaks were observed at m/z 909 ($[M - H - 162 - 80]^{-}$) due to the loss of a sulfo-hexose moiety, and at 873

^{© 2007} Verlag Helvetica Chimica Acta AG, Zürich

 $([M - H - 146 - 132]^{-})$ and 697 $([M - H - 146 - 132 - 176]^{-})$, suggesting the successive elimination of a 6-deoxyhexose, a pentose, and a hexosuronosyl group, respectively. The structure of the aglycone of **1** was recognized as (3β) -3-hydroxyurs-20(21)-en-28-oic acid by ¹H- and ¹³C-NMR analyses (*Table 1*), especially based on correlations observed in the COSY, NOESY, HSQC and HMBC spectra, and in full agreement with literature data [4]. From these data, the structure of compound **1** was elucidated as (3β) -3-{[6-deoxy- α -L-mannopyranosyl- $(1 \rightarrow 2)$ - α -L-arabinopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranurosonyl]oxy}urs-20-en-28-oic acid 28-(2-*O*-sulfo- β -D-glucopyranosyl) ester.

The ¹H-NMR spectrum of **1** displayed six Me *singlets* at $\delta(H)$ 0.61, 0.89, 0.98, 1.07, 1.15, and 1.60, one Me *doublet* at $\delta(H)$ 0.97 (J = 6.5 Hz), an olefinic H-atom at $\delta(H)$ 5.28 (dd, J = 6.7, 1.5 Hz, H–C(21)), and one oxygenated methine at $\delta(H)$ 3.25 (dd, J = 11.4, 3.8 Hz, H–C(3)). Moreover, the ¹³C-NMR spectrum showed characteristic signals of an ester group at $\delta(C)$ 174.7 (C(28)), and a quaternary olefinic C-atom at $\delta(C)$ 142.6 (C(20)). These data indicated an ursane aglycone with a pentacyclic skeleton and a C=C bond at C(20), as well as a carboxylic acid function at C(28), identified as (3β)-3-hydroxyurs-20(21)-en-28-oic acid [4]. HMBC Cross-peaks between $\delta(H)$ 5.28 (dd, J = 6.7, 1.5 Hz, H–C(21)) and both $\delta(C)$ 49.3 (C(17)) and 37.1 (C(22)), and COSY cross-peaks between $\delta(H)$ 5.28 (H–C(21)) and $\delta(H)$ 1.82, 2.59 (CH₂(22)) revealed the position of the C=C bond. The relative configurations at C(18), C(19), and C(3) were determined from a NOESY experiment, which showed key cross-peaks between H–C(18) at $\delta(H)$ 1.20 and H–C(13) at $\delta(H)$ 2.59, between H–C(19) at $\delta(H)$ 2.26 (dd, J = 12.7, 6.5 Hz) and Me(30) at $\delta(H)$ 1.60 (s), and between H–C(3) at $\delta(H)$

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of the Aglycone Moieties of **1**-**4**. At 600/150 MHz, resp., in (D_5) pyridine; δ in ppm, *J* in Hz. Overlapping signals are reported without signal multiplicities.

Position	1		2		3		4	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
1	0.75, 1.44	38.7	0.72, 1.46	38.6	1.15, 1.52	38.3	0.96, 1.44	38.9
2	1.82, 2.32	26.1	1.86, 2.22	26.0	1.86, 2.13	25.7	1.78, 2.14	26.6
3	3.25 (dd,	89.4	3.28(dd,	90.2	3.33 (dd,	89.5	3.10 (<i>dd</i> ,	88.7
	J = 11.4, 3.8)		J = 11.2, 3.8)		J = 11.5, 3.9		J = 11.7, 4.0	
4		39.1		39.3		39.2		39.1
5	0.56	55.6	0.63	55.7	1.02	54.8	0.80	55.5
6	1.25, 1.32	18.1	1.20, 1.37	18.1	1.14, 1.42	18.1	1.38, n.d. ^a)	18.3
7	1.15, 1.55	33.9	n.d. ^a)	34.0	n.d. ^a)	34.6	1.68, 1.84	36.2
8	,	41.7	,	41.8	,	39.8	,	39.9
9	1.19	50.4	1.23	50.6	2.76	46.4	2.59	46.9
10		36.5		36.6		36.4		36.7
11	1.07, 1.31	21.3	1.39, n.d. ^a)	21.5	1.95, 2.06	22.9	1.18, 1.98	22.9
12	1.02, 1.62	27.4	1.16, 1.74	27.6	6.01 (br. s)	127.0	5.90 (br. s)	129.0
13	2.59	38.9	2.71	39.0		135.7		133.5
14	2107	40.9	21/1	41.0		57.3		56.8
15	1.45, n.d. ^a)	29.3	1.55, 2.09	29.3	2.33, 2.59	25.6	2.30, 2.52	25.4
16	1.44, 2.80	32.3	1.52, 2.91	32.5	n.d. ^a)	26.5	n.d. ^a)	26.2
17	1111, 2100	49.3	1102, 201	49.5	indi)	49.2	indi)	48.8
18	1.20	49.0	1.29	49.2	2.82(d,	55.0	2.60(d,	54.5
10	1.20	1910	1.27	.,,,,	J = 11.3)	0010	J = 11.2)	6 110
19	2.26 (dd,	36.9	2.40 (<i>dd</i> ,	37.1	1.75	36.8	1.44	37.1
	J = 12.7, 6.5	2017	J = 11.5, 5.9	0/11	1170	2010		0/11
20	· 12.,, o.c.)	142.6	• • • • • • • • • • • • • • • • • • • •	142.7	1.04	39.1	0.81	38.8
20	5.28 (dd,	117.4	5.37 (dd,	118.0	1.27, 1.36	30.5	1.25, 1.30	30.4
21	J = 6.7, 1.5)	11/.1	J = 6.5, 1.4	110.0	1.27, 1.50	00.0	1.20, 1.00	20.1
22	1.82, 2.59	37.1	1.87, 2.68	37.0	1.54, 1.96	37.2	1.60, 1.76	37.2
23	1.15(s)	27.6	1.36(s)	27.8	1.37(s)	27.7	1.03(s)	27.5
24	0.98(s)	16.2	1.10(s)	16.4	1.11(s)	16.7	0.96(s)	16.4
25	0.61(s)	16.0	0.67(s)	16.1	0.80(s)	16.0	0.80(s)	16.3
26	1.07(s)	15.7	1.17(s)	15.9	1.04(s)	18.6	1.13(s)	18.9
20	0.89(s)	14.6	0.99(s)	15.0	1.01 (5)	178.0	1.12 (5)	178.4
28	0.09 (0)	174.7	0.77 (3)	174.7		180.0		176.7
20 29	0.97 (d,	23.2	1.07 (d,	23.3	1.29(d,	18.2	1.11 (<i>d</i> ,	17.9
	J = 6.5	23.2	J = 5.9	25.5	J = 6.2)	10.2	J = 6.0	17.7
30	J = 0.5 1.60 (s)	21.6	J = 5.9 1.69 (s)	21.7	J = 0.2) 0.85 (d,	21.0	J = 0.0) 0.70 (<i>d</i> ,	20.9
50	1.00 (3)	21.0	1.07 (8)	21.1	J = 6.3	21.0	J = 6.2)	20.9

^a) Not determined.

3.25 (*dd*, J = 11.4, 3.8 Hz) and both H–C(5) at δ (H) 0.56 and Me(23) at δ (H) 1.15 (*s*). These correlations confirmed the β -axial position of H–C(18), and the α -axial positions of H–C(19) and H–C(3). The chemical shifts at δ (C) 89.4 (C(3)) and 174.7 (C(28)) further suggested two glycosidic linkages at C(3) and C(28).

The ¹H-NMR spectrum of **1** indicated four anomeric H-atoms at $\delta(H) 6.03$ (d, J = 8.1 Hz), 5.66 (br. s), 5.51 (d, J = 6.0 Hz), and 4.79 (d, J = 7.4 Hz), which were HSQC-correlated with four anomeric C-atom signals at $\delta(C)$ 92.3, 101.4, 100.7, and 104.6,

respectively. The ring H-atoms of the monosaccharide residues were assigned starting from the readily identifiable anomeric H-atoms by means of COSY, TOCSY, HSQC, and HMBC experiments (*Table 2*). Several sugar moieties were identified, including one α -L-rhamnopyranosyl (Rha), one α -L-arabinopyranosyl (Ara), one β -D-glucopyranosyl (Glc), and one β -D-glucopyranuronosyl (GlcA) unit, in agreement with the results of acid hydrolysis of the crude saponin fraction. The relatively large ${}^{3}J(1,2)$ values (6.0–8.1 Hz) for the Glc, GlcA, and Ara residues (*Table 2*) indicated β anomeric orientation for Glc and GlcA, and α -anomeric orientation for Ara [5]. The multiplicity of the anomeric ¹H-NMR signal of Rha (br. *s*) indicated α -anomeric orientation. The monosaccharides obtained by acid hydrolysis of the crude extract were identified as D-glucopyranuronic acid, D-glucose, L-arabinose, and L-rhamnose by TLC and optical-rotation measurements.

An HMBC correlation between $\delta(H) 6.03 (d, J = 8.1 \text{ Hz}, H-C(1) \text{ of Glc})$ and $\delta(C)$ 174.7 (C(28) of aglycone) indicated an ester linkage between the aglycone and a Glc moiety. The location of the OSO₃H group in 2-position of Glc was based on the downfield shifts observed in the HSQC spectrum for the Glc H-C(2) and C(2) resonances at $\delta(H) 4.96 (t, J = 8.4 \text{ Hz})$ and $\delta(C) 78.5$, respectively. After subtraction of the anomeric signals of the sulfo-glucosyl moiety, the signals of three sugars linked to C(3) of the aglycone remained. HMBC Cross-peaks between H-C(3) of the aglycone at $\delta(H) 3.25 (dd, J = 11.4, 3.8 \text{ Hz})$ and GlcA C(1) at $\delta(C) 104.6$, and a reverse correlation between GlcA H-C(1) at $\delta(H) 4.79 (d, J = 7.4 \text{ Hz})$ and C(3) at $\delta(C) 89.4$, indicated a glucopyranuronosyl moiety at C(3) of the aglycone. The NOE interaction of GlcA H-C(2) at $\delta(H) 4.03 (t, J = 8.3 \text{ Hz})$ with Ara H-C(1) at $\delta(H) 5.51 (d, J = 6.0 \text{ Hz})$, and the HMBC connectivities of GlcA H-C(2) with Ara C(1) at $\delta(C)$ 100.7, and of Rha H-C(1) at $\delta(H) 5.66 (br. s)$ with Ara C(2) at $\delta(C) 75.1$, revealed an α -L-Rha- $(1 \rightarrow 2)$ - α -L-Ara- $(1 \rightarrow 2)$ - β -D-GlcA oligosaccharide chain at C(3) of the aglycone.

Compound **2** exhibited in the HR-ESI mass spectrum the $[M + Na]^+$ signal at m/z 977.3507 (calc. 977.3487), consistent with the molecular formula $C_{42}H_{66}O_{20}S_2$. Negativeion FAB-MS showed the $[M - H]^-$ peak at m/z 953, indicating a molecular weight of 954. The fragment-ion peaks at m/z 873 ($[M - H - 80]^-$), 711 ($[M - H - 80 - 162]^-$), and 697 ($[M - H - 80 - 176]^-$) revealed the loss of one sulfo-hexose and one sulfohexosuronosyl moiety. 2D-NMR Spectroscopic analyses of **2** led to the establishment of its structure as (3β)-3-[(2-*O*-sulfo- β -D-glucopyranurosonyl)oxy]urs-20-en-28-oic acid 28-(2-*O*-sulfo- β -D-glucopyranosyl] ester.

The ¹H- and ¹³C-NMR signals of **2**, assigned by 2D-NMR analysis, were almost superimposable to those of **1**, except for the sugar part at C(3) of the aglycone (*Tables 1* and 2). An HMBC correlation between δ (H) 4.91 (d, J = 7.1 Hz, GlcA H–C(1)) and δ (C) 90.2 (C(3)), and an NOESY cross-peak between GlcA H–C(1) and the aglycone H–C(3) at δ (H) 3.28 (dd, J = 11.2, 3.8 Hz) confirmed a linkage between the aglycone and a glucopyranurosonyl moiety. In the HSQC spectrum, the location of the sulfate group at C(2) of GlcA was determined by the downfield shift GlcA resonances H–C(2) and C(2) at δ (H) 4.99 (t, J = 8.1 Hz) and δ (C) 80.0, respectively.

HR-ESI-MS Analysis of **3** showed the $[M + Na]^+$ signal at m/z 751.3349 (calc. 751.3339), consistent with the molecular formula $C_{36}H_{56}O_{13}S$. Negative-ion FAB-MS showed the $[M - H]^-$ peak at m/z 727, indicating a molecular weight of 728. The fragment-ion peaks at m/z 683 ($[M - H - 44]^-$) and at m/z 603 ($[M - H - 44 - 80]^-$)

Table 2. ¹*H*- and ¹³*C*-*NMR Data of the Sugar Moieties of* **1**–**4**. At 600/150 MHz, resp., in (D₅)pyridine; δ in ppm, *J* in Hz. Overlapping signals are reported without signal multiplicities.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Atom	1		2		3		4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\delta(H)$	$\delta(C)$	$\overline{\delta(\mathrm{H})}$	$\delta(C)$	$\overline{\delta(\mathrm{H})}$	$\delta(C)$	$\overline{\delta(\mathrm{H})}$	$\delta(C)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-O-GlcA:	:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			104.6	4.91 (d, J = 7.1)	103.6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				()					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
Ara: 5.51 (d, $J = 6.0$) 100.7 5.06 (d, $J = 6.7$) 106.7 H-C(2) 4.45 75.1 4.45 73.3 H-C(3) 4.15 71.9 4.12 73.3 H-C(4) 4.17 67.0 4.25 68. $H_a^-C(5)$ 3.65 (d, 63.3 3.66 (d, 66. 66. $J = 10.7$) $J = 10.9$) H_{2} <t< td=""><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	. ,								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			inter)		mai				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5.51 (d, I = 6.0)	100.7					5.06 (d, I = 6.7)	106.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								()	73.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,								73.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,								68.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Pi_a = C(3)$	J = 10.7)	05.5						00.0
Rha: Image: Market of the second	$H_{\beta}-C(5)$	4.33 (<i>dd</i> ,						4.26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		J = 10.7, 5.9)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rha:								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(1)	5.66 (br. s)	101.4						
J = 9.5, 3.1) H-C(4) 4.17 73.1 H-C(5) 4.54 (dq, 69.5 J = 9.4, 6.0) Me(6) 1.64 (d, $J = 6.0$) 18.1 Gle: H-C(1) 4.80 (d, 102.9 4.66 (d, $J = 7.8$) 104. J = 7.1) H-C(2) 4.92 (t, 80.6 3.99 83. J = 8.2) H-C(3) 441 (t, 77.1 4.19 (t, $J = 9.1$) 77. J = 8.8) H-C(4) 4.12 (t, 70.7 4.06 (t, $J = 9.3$) 71. J = 9.0) H-C(5) 3.89 76.7 3.80 77. CH ₂ (6) 4.25 (dd, 61.7 4.25 62. J = 11.3, 5.2) 4.44 4.45 (br. d, $J = 11.3$) 28-O-Gle: H-C(1) 6.03 (d, $J = 8.1$) 92.3 6.18 (d, $J = 8.1$) 92.6 6.21 (d, $J = 8.1$) 95. H-C(2) 4.96 (t, $J = 8.4$) 78.5 5.12 (t, $J = 8.4$) 78.7 4.15 73. H-C(3) 4.26 (t, $J = 8.4$) 76.9 4.40 (t, $J = 8.8$) 77.2 4.24 78. H-C(4) 4.08 (t, $J = 9.4$) 70.2 4.23 (t, $J = 9.3$) 70.5 4.23 70. H-C(5) 3.80 77.8 3.90 78.1 3.98 78. CH ₂ (6) 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 J = 11.9, 4.6) 4.38	H-C(2)	4.47 (br. s)	71.5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3)	4.42 (<i>dd</i> ,	71.5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		J = 9.5, 3.1)							
J = 9.4, 6.0) Me(6) 1.64 (d, J = 6.0) 18.1 Glc: H-C(1) 4.80 (d, 102.9 4.66 (d, J = 7.8) 104. J = 7.1) H-C(2) 4.92 (t, 80.6 3.99 83. J = 8.2) H-C(3) 4.41 (t, 77.1 4.19 (t, J = 9.1) 77. J = 8.8) H-C(4) 4.12 (t, 70.7 4.06 (t, J = 9.3) 71. J = 9.0) H-C(5) 3.89 76.7 3.80 77. CH ₂ (6) 4.25 (dd, 61.7 4.25 62. J = 11.3, 5.2) 4.44 4.45 (br. d, J = 11.3) 28-O-Glc: H-C(1) 6.03 (d, J = 8.1) 92.3 6.18 (d, J = 8.1) 92.6 6.21 (d, J = 8.1) 95. H-C(2) 4.96 (t, J = 8.4) 78.5 5.12 (t, J = 8.4) 78.7 4.15 73. H-C(3) 4.26 (t, J = 8.8) 76.9 4.40 (t, J = 8.8) 77.2 4.24 78. H-C(4) 4.08 (t, J = 9.4) 70.2 4.23 (t, J = 9.3) 70.5 4.23 70. H-C(5) 3.80 77.8 3.90 78.1 3.98 78. CH ₂ (6) 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 J = 11.9, 4.6) 4.38	H-C(4)	4.17	73.1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(5)	4.54 (<i>dq</i> ,	69.5						
Gle: $4.80 (d, 102.9 4.66 (d, J = 7.8) 104.$ $H-C(1)$ $4.80 (d, 102.9 4.66 (d, J = 7.8) 104.$ $H-C(2)$ $4.92 (t, 80.6 3.99 83.$ $H-C(3)$ $4.92 (t, 77.1 4.19 (t, J = 9.1) 77.$ $H-C(4)$ $4.12 (t, 70.7 4.06 (t, J = 9.3) 71.$ $H-C(5)$ $3.89 76.7 3.80 77.$ $CH_2(6)$ $4.25 (dd, 61.7 4.25 62.$ $J = 11.3$ $J = 11.3$ 28-O-Gle: $J = 11.3$ $H-C(1) 6.03 (d, J = 8.1) 92.3 6.18 (d, J = 8.1) 92.6 (d, 61.7 4.25 62.)$ $J = 11.3$ $J = 11.3$ 28-O-Gle: $J = 11.3$ $H-C(2) 4.96 (t, J = 8.4) 78.5 5.12 (t, J = 8.4) 78.7 4.15 73.$ $H-C(3) 4.26 (t, J = 8.8) 76.9 4.40 (t, J = 8.8) 77.2 4.24 78.$ $H-C(4) 4.08 (t, J = 9.4) 70.2 4.23 (t, J = 9.3) 70.5 4.23 70.$ $H-C(5) 3.80 77.8 3.90 78.1 3.98 78.$ $CH_2(6) 4.02 61.2 4.15 (dd, 61.4 4.28 62.)$ 4.17 $J = 11.9, 4.6$)		J = 9.4, 6.0)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Me(6)	1.64 (d, J = 6.0)	18.1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Glc:								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(1)						102.9	4.66 (d, J = 7.8)	104.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(2)						80.6	3.99	83.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H-C(3)						77.1	4.19(t, J = 9.1)	77.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,,,,,		
$J = 9.0)$ $H-C(5)$ $CH_{2}(6)$ $J = 9.0)$ 3.89 76.7 3.80 $77.$ 4.25 $(dd, 61.7 4.25 62.$ $J = 11.3, 5.2)$ 4.44 4.45 $(br. d, J = 11.3)$ $28-O-Glc:$ $H-C(1)$ 6.03 $(d, J = 8.1)$ 92.3 6.18 $(d, J = 8.1)$ 92.6 6.21 $(d, J = 8.1)$ $95.$ $H-C(2)$ 4.96 $(t, J = 8.4)$ 78.5 5.12 $(t, J = 8.4)$ 78.7 4.15 $73.$ $H-C(3)$ 4.26 $(t, J = 8.8)$ 76.9 4.40 $(t, J = 8.8)$ 77.2 4.24 $78.$ $H-C(4)$ 4.08 $(t, J = 9.4)$ 70.2 4.23 $(t, J = 9.3)$ 70.5 4.23 $70.$ $H-C(5)$ 3.80 77.8 3.90 78.1 3.98 $78.$ $CH_{2}(6)$ 4.02 61.2 4.15 $(dd, 61.4$ 4.28 $62.$ 4.17 $J = 11.9, 4.6)$ 4.38	H - C(4)						707	4.06(t I = 9.3)	71.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							/01/	100 (1,0 510)	, 11,
CH ₂ (6) 4.25 (dd, 61.7 4.25 62. J = 11.3, 5.2) 4.44 4.45 (br. d, J = 11.3) 28-O-Glc: H-C(1) 6.03 (d, J = 8.1) 92.3 6.18 (d, J = 8.1) 92.6 6.21 (d, J = 8.1) 95. H-C(2) 4.96 (t, J = 8.4) 78.5 5.12 (t, J = 8.4) 78.7 4.15 73. H-C(3) 4.26 (t, J = 8.8) 76.9 4.40 (t, J = 8.8) 77.2 4.24 78. H-C(4) 4.08 (t, J = 9.4) 70.2 4.23 (t, J = 9.3) 70.5 4.23 70. H-C(5) 3.80 77.8 3.90 78.1 3.98 78. CH ₂ (6) 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 J = 11.9, 4.6) 4.38	H = C(5)					,	767	3.80	77.5
$J = 11.3, 5.2) \\ 4.44 \\ 4.45 (br. d, \\ J = 11.3)$ 28-O-Glc: H-C(1) 6.03 (d, J = 8.1) 92.3 6.18 (d, J = 8.1) 92.6 6.21 (d, J = 8.1) 95. H-C(2) 4.96 (t, J = 8.4) 78.5 5.12 (t, J = 8.4) 78.7 4.15 73. H-C(3) 4.26 (t, J = 8.8) 76.9 4.40 (t, J = 8.8) 77.2 4.24 78. H-C(4) 4.08 (t, J = 9.4) 70.2 4.23 (t, J = 9.3) 70.5 4.23 70. H-C(5) 3.80 77.8 3.90 78.1 3.98 78. CH ₂ (6) 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 J = 11.9, 4.6) 4.38									62.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0112(0)						0117		02
J = 11.3) 28-O-Glc: H-C(1) 6.03 (d, J = 8.1) 92.3 6.18 (d, J = 8.1) 92.6 6.21 (d, J = 8.1) 95. H-C(2) 4.96 (t, J = 8.4) 78.5 5.12 (t, J = 8.4) 78.7 4.15 73. H-C(3) 4.26 (t, J = 8.8) 76.9 4.40 (t, J = 8.8) 77.2 4.24 78. H-C(4) 4.08 (t, J = 9.4) 70.2 4.23 (t, J = 9.3) 70.5 4.23 70. H-C(5) 3.80 77.8 3.90 78.1 3.98 78. CH ₂ (6) 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 J = 11.9, 4.6) 4.38								1.11	
28-O-Glc: $H-C(1)$ $6.03 (d, J = 8.1)$ 92.3 $6.18 (d, J = 8.1)$ 92.6 $6.21 (d, J = 8.1)$ $95.$ $H-C(2)$ $4.96 (t, J = 8.4)$ 78.5 $5.12 (t, J = 8.4)$ 78.7 4.15 $73.$ $H-C(3)$ $4.26 (t, J = 8.8)$ 76.9 $4.40 (t, J = 8.8)$ 77.2 4.24 $78.$ $H-C(4)$ $4.08 (t, J = 9.4)$ 70.2 $4.23 (t, J = 9.3)$ 70.5 4.23 $70.$ $H-C(5)$ 3.80 77.8 3.90 78.1 3.98 $78.$ $CH_2(6)$ 4.02 61.2 $4.15 (dd, 61.4)$ 4.28 $62.$ 4.17 $J = 11.9, 4.6$ 4.38									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	28- O -Gle					v = 11.5)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6.03 (d I - 8.1)	923	618(d I - 81)	92.6			621(d I - 81)	954
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									73.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$H-C(5)$ 3.80 77.8 3.90 78.1 3.98 78. $CH_2(6)$ 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 $J = 11.9, 4.6$) 4.38 4.38	. ,								
$CH_2(6)$ 4.02 61.2 4.15 (dd, 61.4 4.28 62. 4.17 $J = 11.9, 4.6$) 4.38				· · · · · · · · · · · · · · · · · · ·					
4.17 $J = 11.9, 4.6$) 4.38									
	$CH_2(0)$		01.2		01.4				02.0
		4.1/		· · ·				4.30	
^a) Not determined.	^a) Not dete	ermined.							

suggested the sequential loss of CO₂ and SO₃ groups, respectively. The structure of the aglycone of **3** was recognized as (3β) -3-hydroxyurs-12-ene-27,28-dioic acid (=quinovic acid) [2] by ¹H- and ¹³C-NMR analyses (*Table 1*), based on correlations observed in the COSY, NOESY, HSQC, and HMBC spectra, in full agreement with the literature data. The structure of **3** was, thus, elucidated as 3-*O*-(2-*O*-sulfo- β -D-glucopyranosyl)quinovic acid.

The ¹H-NMR spectrum of **3** displayed four Me *singlets* at δ (H) 0.80, 1.04, 1.11, and 1.37, two Me *doublets* at $\delta(H) 0.85 (J = 6.3 \text{ Hz})$ and $\delta(H) 1.29 (J = 6.2 \text{ Hz})$, an olefinic H-atom at $\delta(H)$ 6.01 (br. s), and one oxygenated methine at $\delta(H)$ 3.33 (dd, J = 11.5, 3.9 Hz, H-C(3)). Moreover, the ¹³C-NMR spectrum showed characteristic signals of two carboxy groups, one esterified at $\delta(C)$ 180.0 (C(28)), the other as the free acid at 178.0 (C(27)). Further, a quaternary olefinic C-atom was observed at $\delta(C)$ 135.7 (C(13)). These data indicated an ursane aglycone with a pentacyclic skeleton and a classical C=C bond at C(12), as well as two COO functions at C(27) and C(28), corresponding to quinovic acid [2]. The relative configurations at C(18), C(19), C(20), and C(3) were determined by a NOESY experiment: cross-peaks between H-C(18) at δ (H) 2.82 (d, J = 11.3 Hz) and both Me(29) at δ (H) 1.29 (d, J = 6.2 Hz) and H–C(20) at $\delta(H)$ 1.04, as well as between H–C(3) at $\delta(H)$ 3.33 (dd, J=11.5, 3.9 Hz) and both H-C(5) at δ (H) 1.02 and Me(23) at δ (H) 1.37 (s), indicated β -axial positions for H-C(18) and H-C(20), and α -axial positions for H-C(19) and H-C(3), respectively. The downfield shifts for $\delta(C)$ 89.5 (C(3)) and $\delta(C)$ 180.0 (C(28)) revealed a glycosidic linkage at C(3) and a free COOH group at C(28), respectively.

The ¹H-NMR spectrum of **3** showed only one anomeric H-atom signal at δ (H) 4.80 (*d*, *J* = 7.1 Hz), which correlated in the HSQC spectrum with an anomeric C-atom signal at δ (C) 102.9. This sugar was determined as a Glc moiety with an OSO₃H group in 2-position, as suggested by the Glc H–C(2) and C(2) resonances at δ (H) 4.92 (*t*, *J* = 8.2 Hz) and δ (C) 80.6, respectively.

In the HR-ESI mass spectrum of **4**, the $[M + Na]^+$ peak was observed at m/z 965.4737 (calc. 965.4722), consistent with the molecular formula $C_{47}H_{74}O_{19}$. Negativeion FAB-MS showed the $[M - H]^-$ peak at m/z 941, indicating a molecular weight of 942. 2D-NMR-Spectroscopic analysis of compound **4** led to the establishment of its structure as 3-O- $[\alpha$ -L-arabinopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyranosyl]quinovic acid 28- $(\beta$ -D-glucopyranosyl) ester.

In the ¹H- and ¹³C-NMR spectra of **4**, the aglycone displayed the same signals as **3**, except for C(28), δ (C) 176.7 revealing esterification. The ¹H-NMR spectrum of **4** showed three anomeric H-atom signals at δ (H) 6.21 (*d*, *J*=8.1 Hz), 5.06 (*d*, *J*=6.7 Hz), and 4.66 (*d*, *J*=7.8 Hz), which gave HSQC correlations with three anomeric C-atom signals at δ (C) 95.4, 106.1, and 104.6, respectively. One *a*-L-Ara group and two β -D-Glc moieties were identified by NMR analysis. An HMBC correlation between δ (H) 6.21 (*d*, *J*=8.1 Hz, Glc H–C(1)) and δ (C) 176.7 (C(28)) indicated an ester linkage between the aglycone and a Glc moiety. An HMBC cross-peak between δ (H) 4.66 (*d*, *J*=7.8 Hz) and C(3) at δ (C) 88.7, and a NOESY cross-peak between δ (H) 4.66 and H–C(3) at δ (H) 3.10 (*dd*, *J*=11.7, 4.0 Hz) indicated that the 3-position of the aglycone carried a second Glc moiety, with HMBC connectivities of Glc H–C(2) at δ (H) 3.99 with Ara C(1) at δ (C) 106.1, and of Ara H–C(1) at δ (H) 5.06 (*d*, *J*=6.7 Hz) with Glc C(2) at δ (C) 83.2, revealing an Ara residue at the Glc C(2) position.

The four known compounds were identified as zygophylosides E, G, and H [2], and $3-O-(\beta-D-quinovopyranosyl)quinovic acid 28-(O-\beta-D-glucopyranosyl) ester [3], on the basis of their NMR and MS data, and by comparison with the literature data.$

Notably, all of the eight isolated saponins possess an ursane-type aglycone, most of them carrying sulfate moieties, which is in accordance with related glycosides previously obtained from several species of *Zygophyllum* [4]. These metabolites may represent chemotaxonomic markers of this genus.

Experimental Part

General. Vacuum liquid chromatography (VLC): silica gel RP-18 (25–40 µm; Merck). Mediumpressure liquid chromatography (MPLC): silica gel 60 (15–40 µm; Merck), Gilson M-303 pump, Büchi glass column (460 × 25 mm, and 460 × 15 mm), Büchi pre-column (110 × 15 mm). TLC and HP-TLC: silica gel 60 F_{254} (Merck); solvent systems: CHCl₃/MeOH/H₂O 13:7:2, lower phase (A), CHCl₃/MeOH/ H₂O 8:5:1 (B); spray reagent: Komarowsky reagent, 2% 4-hydroxybenzaldehyde in 50% H₂SO₄/MeOH 1:5. Optical rotations: AA-OR automatic polarimeter. 1D- and 2D-NMR Spectra: see [6]; δ in ppm, J in Hz. FAB-MS (negative-ion mode; glycerol matrix): JEOL SX-102 spectrometer; in m/z. HR-ESI-MS (positive-ion mode): Q-TOF 1-Micromass.

Plant Material. Zygophyllum geslini Coss. was collected in Ouargla, Algeria, in September 2001, and identified by Mr. *Abdelkader Beloued (Institut National Agronomique (INA)*, Alger, Algeria), where a voucher specimen (No. 6063) was deposited.

Extraction and Isolation. The dried, powdered roots of *Zygophyllum geslini* (383 g) were repeatedly extracted at reflux with MeOH/H₂O 7:3 (3 × 4 l) for 1 h each. The extract was concentrated to dryness, and the residue (42.5 g) was dissolved in H₂O (300 ml), and then extracted with H₂O-sat. BuOH (3 × 300 ml). The BuOH layer was concentrated to dryness, and the residue (12.9 g) was solubilized in MeOH (20 ml) and purified by precipitation with Et₂O (3 × 500 ml): 5.9 g of a crude saponin mixture. This residue was fractionated by successive MPLC (SiO₂; CHCl₃/MeOH/H₂O 8:5:1, CHCl₃/MeOH/H₂O 13:7:2, lower phase) to afford **1** (15 mg), **4** (5 mg), zygophyloside E (11 mg), zygophyloside G (12 mg), zygophyloside H (6 mg), and 3-*O*-(β -D-quinovopyranosyl)quinovic acid 28-(*O*- β -D-glucopyranosyl) ester (12 mg).

The dried, powdered aerial parts of *Z. geslini* (250 g) were extracted according to the same protocol as reported above for the roots, but the BuOH-soluble residue (19 g) was submitted to VLC (*RP-18*; H₂O/MeOH gradient) to afford five fractions (*Fr.* 1-5). *Fr.* 3 (152 mg), eluted with MeOH/H₂O 1:1, was fractionated by MPLC (SiO₂; CHCl₃/MeOH/H₂O 13:7:2, lower phase) to afford zygophyloside G (21 mg). *Fr.* 4 (107 mg), eluted with MeOH/H₂O 7:3, was purified by MPLC (same system) to afford **1** (7 mg), **2** (6 mg), **3** (7 mg), and zygophyloside E (7 mg).

Acid Hydrolysis. A part (200 mg each) of the Et₂O-precipitated residue from the roots, and of the BuOH-soluble residue from the aerial parts, respectively, was refluxed in 2N aq. CF₃COOH for 2 h. After extraction with CHCl₃, the aq. layer was repeatedly evaporated to dryness with MeOH, until neutral. Glucopyranuronic acid, glucose, arabinose, and rhamnose were identified by comparison with authentic samples by TLC (solvent system *B*). After prep. TLC (solvent system *B*) of the sugar mixture, the optical rotation of each purified sugar was measured.

(3β)-3-{[6-Deoxy-α-L-mannopyranosyl-(1 → 2)-α-L-arabinopyranosyl-(1 → 2)-β-D-glucopyranurosonyl]oxy]urs-20-en-28-oic Acid 28-(2-O-Sulfo-β-D-glucopyranosyl) Ester (1). Colorless, amorphous powder. TLC (eluent A): R_f 0.20. $[a]_{25}^{25} = +15$ (c = 0.19, MeOH). ¹H- and ¹³C-NMR: see Tables 1 and 2. FAB-MS (neg.): 1151 ($[M - H]^-$), 909 ($[M - H - 162 - 80]^-$), 873 ($[M - H - 146 - 132]^-$), 697 ($[M - H - 146 - 132 - 176]^-$). HR-ESI-MS (pos.): 1175.4932 ($[M + Na]^+$, $C_{53}H_{84}NaO_{25}S^+$; calc. 1175.4920).

 (3β) -3-[(2-O-Sulfo-β-D-glucopyranurosonyl)oxy]urs-20-en-28-oic Acid 28-(2-O-Sulfo-β-D-glucopyranosyl] Ester (2). Colorless, amorphous powder. TLC (eluent A): R_f 0.22. $[a]_D^{25} = +23$ (c = 0.10, MeOH). ¹H- and ¹³C-NMR: see Tables I and 2. FAB-MS (neg.): 873 ($[M - H - 80]^-$), 711 $([M - H - 80 - 162]^{-})$, 697 $([M - H - 80 - 176]^{-})$. HR-ESI-MS (pos.): 977.3507 $([M + Na]^{+}, C_{42}H_{66}NaO_{20}S_{2}^{+}; calc. 977.3487)$.

(3β)-3-[(2-O-Sulfo-β-D-glucopyranosyl)oxy]urs-12-ene-27,28-dioic Acid (3). Colorless, amorphous powder. TLC (eluent A): R_f 0.39. $[\alpha]_D^{25} = +15$ (c = 0.10, MeOH). ¹H- and ¹³C-NMR: see Tables 1 and 2. FAB-MS (neg.): 727 ($[M - H]^-$), 683 ($[M - H - 44]^-$), 603 ($[M - H - 44 - 80]^-$). HR-ESI-MS (pos.): 751.3349 ($[M + Na]^+$, $C_{36}H_{56}NaO_{13}S^+$; calc. 751.3339).

(3β)-3-[(α-L-Arabinopyranosyl-(1→2)-β-D-glucopyranosyl)oxy]urs-12-ene-27,28-dioic Acid 28-(β-D-Glucopyranosyl) Ester (4). Colorless, amorphous powder. TLC (eluent A): $R_{\rm f}$ 0.74. $[a]_{\rm D}^{25}$ = +20 (c = 0.15, MeOH). ¹H- and ¹³C-NMR: see *Tables 1* and 2. FAB-MS (neg.): 941 ($[M - H]^-$). HR-ESI-MS (pos.): 965.4737 ($[M + Na]^+$, C₄₇H₇₄NaO¹₁₉; calc. 965.4722).

REFERENCES

- [1] D. Smati, A. Longeon, M. Guyot, J. Ethnopharmacol. 2004, 95, 405.
- [2] K. Pöllmann, S. Gagel, M. H. A. Elgamal, K. H. Shaker, K. Seifert, Phytochemistry 1997, 44, 485.
- [3] R. Aquino, F. De Simone, C. Pizza, C. Conti, M. L. Stein, J. Nat. Prod. 1989, 52, 679.
- [4] O. Safir, S. Fkih-Tetouani, N. De Tommasi, R. Aquino, J. Nat. Prod. 1998, 61, 130.
- [5] Y. Mimaki, A. Yokosuka, M. Hamanaka, C. Sakuma, T. Yamori, Y. Sashida, J. Nat. Prod. 2004, 67, 1511.
- [6] A.-C. Mitaine-Offer, T. Miyamoto, N. Semmar, M. Jay, M.-A. Lacaille-Dubois, Magn. Reson. Chem. 2006, 44, 713.

Received December 22, 2006